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ABSTRACT. This is an expository write up and modernization of a classical result in
Hodge theory, developed over the duration of the 2020 REU program at the University
of Chicago. We provide the necessary background to understand the degeneration of the
Hodge spectral sequence for a smooth and proper scheme X over a field k. The case in
which k is of prime characteristic p > 0 is the primary focus of these notes, but we briefly
illustrate how these results may be extended to the char = 0 case.
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1. INTRODUCTION

Taking inspiration from differential geometry, we would like to develop a cohomology
theory for algebraic varieties with the intent to capture topological data. We seek to adapt
the classic de Rham isomorphism

H i
sing(M,R)∼= H i

dR(M)

which allows us to access the topological (left side) via the analytic (right side) when M is
a real smooth manifold. Serre’s GAGA principle says that the analytic and the algebraic
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are closely related, so it is natural to adapt the above isomorphism to fit our needs:

Topological Data
de Rham
←−−−→ Analytic Data

GAGA
←−−−→ Algebraic Data

However, for a complex manifold X where Ωi
hol denotes the ith degree holomorphic

forms, the isomorphism
H i

sing(X ,C)∼= hi(Ω•hol)

cannot hope to hold. One reason for this is simply that the complex Ω•hol is too short. For
i ≥ dimC X , we see that H i(X ,Ωi

X/C) = 0, but H i
sing(X ,C) = 0 only for i > dimR X = 2 ·

dimC X . We therefore cannot hope to adapt de Rham’s theorem for real smooth manifolds
to varieties – at least not directly.

These notes walk the reader through the necessary facts in "fixing" this error. This
paper does not comprise original research – rather, it serves as an expository overview of
the theory surrounding Hodge and algebraic de Rham cohomology, and focuses on proving
the following result:

Theorem (Illusie, Hodge Degeneration Theorem). Let k be a field, and X a smooth and
proper k-scheme. Then

H`
Hodge(X/k)∼= H`

dR(X/k).

2. BACKGROUND, MOTIVATION, AND DEFINITIONS

This section is intended as a "catch all" for material that does not neatly fit into other
sections. The first subsection is intended to provide accessibility for less experienced read-
ers, and includes the rudimentary definitions encountered in a first course in scheme theory.
The other two subsections motivate the definition of algebraic de Rham cohomology and
and list fundamental results respectively.

2.1. Scheme theory fundamentals. Before we may discuss schemes, we need to intro-
duce sheaves, and before we may discuss sheaves, we need to discuss presheaves. Here
we list two equivalent definition for presheaves.

Definition 2.1. Let X be a topological space. A presheafF of Abelian groups on X consists
of the data

(a) for every open subset U ⊆ X , an Abelian group F(U)
(b) for every inclusion V ↪→U of open subsets of X , a morphism of Abelian groups

ρUV : F(U)→F(V ) subject to the conditions
(0) F( /0) = 0
(1) ρUU is the identity map F(U)→F(U)
(2) if W ⊆V ⊆U are there open subsets, then ρUW = ρVW ◦ρUV

Definition 2.2. Let X be a topological space and define a category Top(X) whose objects
are open sets in X and whose morphisms are inclusions. So Hom(V,U) is empty if V 6⊆U
and Hom(V,U) has one element if V ⊆U . A presheaf F ob objects in a category C is a
contravariant functor from the category Top(X) to C.

As a matter of terminology, We refer to F(U) as the sections of the presheaf F over the
open set U .

Note that for V ⊆U , if φ : V ↪→U is the inclusion map, then F(φ) = ρUV is called the
restriction map and we write s|V to denote ρUV (s) when s ∈ F(U).

Definition 2.3. A sheaf is a presheaf F on a topological space X which additionally satis-
fies
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(3) if U is an open set, {Vi} is an open covering of U , and s ∈ F(U) is an element
satisfying s|Vi = 0 for all i, then s = 0.

(4) if U is an open set, {Vi} is an open covering of U , and if for each i we have
elements si ∈ F(Vi) with the property that for each i, j si|Vi∩Vj = s j|Vi∩V j , then
there is an element s ∈ F(U) (necessarily unique) such that s|Vi = si for each i.

To see why the s in condition (4) is unique, take two elements s and t that satisfy (4).
Then (s− t)|Vi = 0 so condition (3) implies s− t = 0. In this way, we think of sheaves as
presheaves whose sections are defined by local data.

We ought to discuss morphisms on sheaves as well.

Definition 2.4. If F and G are presheaves on X of objects in a category C, a morphism
φ : F → G is a natural transformation F =⇒ G. That is, φ consists of a morphism
φ(U) : F(U)→ G(U) in C for each open set U ⊆ X , such that for any inclusion V ⊆U ,
the diagram

F(U) G(U)

F(V ) G(V )

ρUV

φ(U)

ρ ′UV

φ(V )

commutes. If F and G are fully-fledged sheaves, then we use the same definition for a
morphism of sheaves (we don’t require anything extra for a morphism of sheaves). We say
that φ is an isomorphism of sheaves if it is a natural isomorphism.

It’s worth noting that if F is a sheaf on X and f : X → Y is a continuous map of topo-
logical spaces, then f induces a sheaf on Y .

Definition 2.5. Let f : X → Y be a map of topological spaces and F be a sheaf on X .
We define the direct image sheaf f∗F on Y by ( f∗F)(V ) = F( f−1(V )) for any open set
V ⊆ Y .

Definition 2.6. Let A be a ring, a⊆ A an ideal. V (a)⊆ Spec(A) is the set of all primes in
A which contain a.

Lemma 2.7.
(a) If a,b are two ideals in A, then V (ab) =V (a)∪V (b) (Finite union still closed)
(b) If {ai} is any set of ideals in A, then V (∑ai) =

⋂
V (ai) (Arbitrary intersection still

closed)
(c) If a and b are two ideals, V (a)⊆V (b) ⇐⇒

√
a⊇
√
b.

Proof. See [Har77, Lemma 2.1]; however, the proof is elementary and the reader is en-
couraged to write it themselves. □

This means the collection {SpecA\V (a)}a an ideal in A is a topology on SpecA. Note that
V (A) = /0 and V ({0}) = SpecA.

Given this, we may define the sheaf of rings O on SpecA. For an open set U ⊆ SpecA,
we define O(U) to be the set of functions

s : U →
⊔
p∈U

Ap

such that s(p) ∈ Ap for each p ∈U ⊆ SpecA, that is, s is locally a quotient of elements of
A. More precisely, this means
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∀p ∈U , there is a neighborhood V ⊆U of p and elements a, f ∈ A such that
for each q ∈V , we have f 6∈ q and s(q) = a

f ∈ Aq.

Pointwise sums and products of these functions yield back functions of this same form.
The functions s0 and s1 inO(U) which send everything to 0 and 1 respectively are additive
and multiplicative identities respectively. This means O(U) is indeed a ring with identity,
and is commutative exactly when A is commutative. If V ⊆U is an open set in SpecA,
then the natural restriction map O(U)→O(V ) (which sends a function s ∈ O(U) to s |V )
is a ring homomorphism. It is clear O is a presheaf we send V ↪→U to O(U)→O(V ).
Finally, because of the local nature of the sections s ∈O(U), O is a full-fledged sheaf. We
quickly check that:

(a) Suppose U ⊆ SpecA is open, {Vi} is an open cover of U , and s ∈ O(U) satisfies
s |V = 0 for all i. Choose an arbitrary element p ∈U . This is contained in Vj for
some j, and therefore s(p) = s |V j(p) = 0. The section s sends everything in U to
0, so it must be the 0 function on U . This proves property (3) of a sheaf.

(b) Suppose U ⊆ SpecA is open, {Vi} is an open cover of U , and for each i we have
elements si ∈ O(Vi) with the property that si |Vi∩V j = s j |Vi∩V j . For each p ∈U ,
there is some Vi such that p ∈Vi, so we may define a function

s : U →
⊔
p∈U

Ap

by s(p) = si(p). If p ∈Vi∩Vj, then si(p) = si |Vi∩V j(p) = s j |Vi∩V j(p) = s j(p), so s
is well-defined. Finally, s |Vi = si by definition, so we have property (4) of a sheaf.

This leads us to a definition:

Definition 2.8. Let A be a ring. The spectrum of A is the pair (SpecA,O) consisting of
the set SpecA endowed with the Zariski topology and the sheaf of rings O defined above.

More generally we may talk about a ringed space:

Definition 2.9. A ringed space is a pair (X ,OX ) consisting of a topological space X and
a sheaf of rings OX on X . A morphism of ringed spaces from (X ,OX ) to (Y,OY ) is a pair
( f , f ]) of a continuous map f : X → Y and a map f ] :OY → f∗OX of sheaves of rings on
Y .

Example 2.10. Any arbitrary topological space X can be made a ringed space by defining
a sheafOX which takes an open subset U ⊆X to the set of real-valued continuous functions
f : U → R, or complex-valued continuous functions f : U → C. That is, if we define

OX (U) = { f : U → C | f is continuous } ,
then (X ,OX ) is a ringed space. To see this, remember first that the set OX (U) is in-
deed a commutative ring with ( f +g)(x) = f (x)+g(x) and ( f ·g)(x) = f (x) ·g(x) where
the constant maps f0 : x 7→ 0 and f1 : x 7→ 1 are the additive identity and the multiplica-
tive identity respectively. Next, given an inclusion V ↪→ U we get a morphism of rings
OX (U)→OX (V ) which does the obvious thing: f 7→ f |V . Thus, OX is a presheaf. We
apply the same arguments above which show the sheaf of rings O on SpecA satisfy the
"local data" requirements of a sheaf to show that OX is a sheaf.

Definition 2.11. A ringed space (X ,OX ) is a locally ringed space if for each point P ∈ X ,
the stalk OX ,P is a local ring.

Example 2.12.
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• Given an arbitrary topological space, the ringed space (X ,OX ) defined in example
2.10 is also a locally ringed space. We claim that for any point P ∈ X , the stalk
OX ,P at P is a local ring whose unique maximal ideal m is the set of functions
which are zero at P.
Proof. Clearly, m is an ideal of OX ,P: for f ,g ∈ m and h ∈ OX ,P, f + g and h · f
are still zero at P. We show that if f ∈OX ,P \m then f is a unit, and conclude that
m is the unique maximal ideal of OX ,P.

To see this, first take U ⊆ X with U open and notice that a function f ∈OX (U)
is a unit if and only if f is nonzero on U . Its inverse is the function f−1 defined
f−1(x) = 1/ f (x).

Next, notice that if f is not zero at P, i.e. if f ∈ OX ,P \m, then there is some
neighborhood U of P such that f is nonzero on U . The germ of f is therefore
invertible, so f is a unit in OX ,P. We conclude that (X ,OX ) is a locally ringed
space. □

• If X is additionally a manifold (with the correct additional structure), then we may
take OX to be the sheaf of differentiable or complex-analytic functions. In either
case, (X ,OX ) is a locally ringed space.

• If A is a commutative ring, then the spectrum (SpecA,O) of A is a locally ringed
space. For any p ∈ SpecA, the stalk Op is isomorphic to Ap [Har77, Prop 2.3].

Definition 2.13. An affine scheme is a locally ringed space (X ,OX ) which is isomorphic
to the spectrum of a commutative ring. A scheme is a locally ringed space (X ,OX ) in
which every point has an open neighborhood U such that U (as a topological space under
the subset topology) together with the restricted sheaf OX |U is an affine scheme. That is,
a scheme is a locally ringed space which is locally realized as the spectra of commutative
rings. We call X the underlying topological space of the scheme (X ,OX ) and OX its
structure sheaf. We often use X to refer to the entire scheme, and write sp(X) (read "space"
X) to refer to the topological space X devoid of its scheme structure. A morphism of
schemes is a morphism of locally ringed spaces.

Finally, in order to discuss algebraic de Rham cohomology, we require Kähler differ-
entials. We summarize Matsumura’s treatment of the topic found in [MRB86, Chapter
9] and [Mat70, Chapter 10]. Kähler differentials generalize the idea of a derivative of a
polynomial, and provide a purely algebraic realization of differentiation.

Definition 2.14. Suppose A is a commutative ring, B is an A-algebra via the ring ho-
momorphism φ : A→ B, and M is a B-module. An A-derivation on B is an A-module
homomorphism d : B→M which satisfies the Leibniz rule

d( f g) = f dg+g d f

for all f ,g ∈ B. We denote the set of all such functions DerA(B,M). In the case that A = Z,
we sometimes write Der(B,M) for DerZ(B,M).

The following is sometimes included in the definition of a derivation, but it is equivalent
to the assumption that d is an A-module homomorphism:

Proposition 2.15. Let d : B→M be an A-derivation, where φ : A→ B is the structure map
of B as an A-algebra. Then φ(A)⊆ ker(d).

Proof. By the Leibniz rule,

d(1) = d(1 ·1) = d(1)+d(1),

so d(1)= 0. Since d is a morphism of A-modules, for a∈A, d(φ(a))=φ(a) ·d(1)= 0. □
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Lemma 2.16. Suppose R is a ring of characteristic p. If d ∈ Der(A,M), then d(ap) = 0.

Proof. For any a ∈ A, we have d(an) = nan−1d(a). Thus, d(ap) = pap−1d(a) = 0. □
Definition 2.17. Let A,B,φ, and M be as in definition 2.14. The module of Kähler differ-
entials or the module of relative differential forms of B over A is the B-module ΩA/B for
which there is a universal derivation d : B→ ΩA/B which satisfies the following universal
property:

for any B-module M and any derivation d′ : B→M, there exists a unique B-module
homomorphism α : ΩB/A→M such that d′ = α ◦d.

In other words, the composition with d yields an isomorphism

HomB(ΩB/A,M)→ DerA(B,M)

for every B-module M.

Alternatively, we may define ΩB/A as follows.

Definition 2.18. Let A,B,φ, and M be as in definition 2.14. Define I to be the kernel of
the map {

B⊗A B→ B

∑si⊗ ti 7→ ∑si · ti
Then the module of Kähler differentials of B can be equivalently defined by

ΩB/A = I/I2

and the universal derivation is the homomorphism d given by

ds = 1⊗ s− s⊗1.

The module of differentials can be carried over to schemes. Let f : X → Y be a mor-
phism of schemes, and let ∆ : X → X×Y X . The morphism ∆ is an isomorphism of X onto
∆(X), which is a locally closed subscheme of X ×Y X , i.e., a subscheme of an open subset
W of X×Y X . [Har77, Corollary 2.4.2].

Definition 2.19. Let J be the sheaf of ideals of ∆(X) in W . We define the sheaf of relative
differentials of X over Y to be the sheaf ΩX/Y = ∆∗(J /J 2) on X .

2.2. Algebraic de Rham Cohomology and Hodge Cohomology. In this subsection, we
define algebraic de Rham Cohomology and Hodge Cohomology.

Definition 2.20. Differential forms of higher degree are defined as the exterior powers over
OX :

Ωn
X/Y :=

n∧
ΩX/Y .

The universal derivation d :OX →ΩX/Y extends in a natural way to a sequence of maps

0→OX
d−→Ω1

X/Y
d−→Ω2

X/Y
d−→ . . .

which satisfies d ◦d = 0. This forms a cochain complex known as the algebraic de Rham
complex.

It is tempting to define the algebraic de Rham cohomology to be the cohomology of the
algebraic de Rham complex, but as mentioned in the introduction, taking the cohomology
of the complex (Ω•X/Y ,d) does not provide anything particularly useful. Instead, the correct
definition involves hypercohomology: Hi(X ,Ω•X/k). For a complex F• of coherent sheaves
on a variety X ,
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• (Loosely) hypercohomology is to a complex of sheaves as "normal" cohomology
is to a single sheaf, or rather,

• (Rigorously) hypercohomology of F• is hi(R f∗F•), where f : X → Speck is the
structure morphism and R f∗ : D(X)→ D(Speck) is the induced map on category
of abelian sheaves.

A deep understanding of hypercohomology is not necessary to read these notes. For a
rigorous treatment of the subject, we recommend the book [Huy06]. Instead, we primarily
care that hypercohomology satisfies the following two properties:

(1) Any quasi-isomorphism of complexes α : F•→G• induces an isomorphism α∗ :
Hi(X ,F•)→Hi(X ,G•).

(2) Letting F denote a complex "concentrated in degree 0" (a complex in which every
term is 0 except for at i = 0, which is F), then Hi(X ,F) = H i(X ,F).

Definition 2.21. Suppose X is a finite dimensional scheme over a field k. We define the
algebraic de Rham cohomology of X to be the hypercohomology of the algebraic de Rham
complex:

H i
dR(X/k) :=Hi(X ,Ω•X/k).

To see that this is indeed the "correct" definition, consider that, at the very least, we
hope to recover the isomorphism

H i
sing(X ,C)∼= H i

dR(X/C)

for a variety over C. Given some sheaf F0 and a resolution

0−→F0 −→F0 −→F1 −→ ...,

we can easily verify that we have a quasi-isomorphism between the complexes F0 and F•:

(0→F0→ 0→ ...)' (0→F0→F1→ ...),

which by the properties listed above gives us

H i(X ,F0)
(2)∼= Hi(X ,F0)

(1)∼= Hi(X ,F•).

For a variety X/C, we then have

H i
sing(X ,C)∼= H i(X ,C)∼=Hi(X ,O•X/k) = H i

dR(X ,C),

as desired, where C denotes the constant sheaf on X whose stalks are all C. Note that the
first isomorphism is due to [AG66].

We now define a slightly more accessible, albeit more topological, cohomology for
schemes.

Definition 2.22. Let X be a scheme, k a field, and f : X → Speck a morphism of schemes.
The Hodge cohomology of a variety X/k is

H`
Hodge(X/k) =

⊕
i+ j=`

H i(X ,Ω j
X/k),

where H i(X ,Ω j
X/k) is the ith sheaf cohomology of Ω j

X/k [Har77, pg 207]
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2.3. Miscellaneous Results. This section proceeds in no particular order; rather, it is a list
of results included for convenience. References are provided where proofs do not appear.

Lemma 2.23. Assume f : X → Y is a smooth map of schemes. Then f factors as

X
g−→ An

Y
h−→ Y,

where h is the canonical projection and g is étale.

Proof. Fix a point x ∈ X and denote by k(x) the residue field of the local ring OX ,x. Let
s1, ...,sn be sections ofOX in a neighborhood of x for which the differentials form a basis of
Ω1

X/Y at x, i.e. chosen such that the images (dsi)x of dsi in Ω1
X/Y form a basis of this module

over OX ,x. Note that this is equivalent to choosing s1, ...,sn such that the images (dsi)x in
Ω1

X/Y,x⊗k(x) form a k(x) basis when considering Ω1
X/Y,x to be a k(x) vector space. Since f

is smooth, Ω1
X/Y is locally free of finite type as a OX module. This means that there exists

an open neighborhood U of x for which the si are defined over U and that the dsi form a
basis of Ω1

X/Y |U . The s j then define a Y -morphism of U in the affine space of dimension n
over Y :

s = (s1, ...,sn) : U → An
Y = Y [t1, ..., tn].

If we do this over each x ∈ X , this yields a well defined étale map g : X → An
Y (see [Ill96,

Section 2.7] for details). Composition with the projection map h : An
Y → Y gives f . □

Proposition 2.24.
(a) If X → Y is a smooth morphism of schemes, the OX -module Ω1

X/Y is locally free
of finite type.

(b) Let X
f−→Y

g−→ S be morphisms of schemes. If f is smooth, then we have a sequence

0→ f ∗Ω1
Y/S→Ω1

X/S→Ω1
X/Y → 0

which is exact and locally split. In particular, if f is étale, the canonical homo-
morphism f ∗Ω1

Y/X →Ω1
X/S is an isomorphism.

Proof. The proof is provided in [AG66, IV, 17.2.3]. □

Assertion (b) in Proposition 2.24 has a converse, which is deduced in the same manner.

Proposition 2.25. In the situation of 2.24 (b), assume g f to be a smooth map. If the
canonical homomorphism f ∗Ω1

Y/S→Ω1
X/S is an isomorphism, then f is étale.

Proposition 2.26. Let f : X → Y be a morphism of schemes, locally of finite presentation.
The following conditions are equivalent:

(i) f is smooth
(ii) f is flat and the geometric fibers of f are regular schemes.

Proof. This is a verification of the discussion found in [Ill96, Sections 2.7 and 2.8]. □

3. THE HODGE SPECTRAL SEQUENCE

In this section, we introduce a spectral sequence, the Hodge spectral sequence, which
provides a connection between Hodge and algebraic de Rham cohomology. We will see
that these two cohomology theories are equivalent exactly when the Hodge specral se-
quence degenerates on the first page. This section is broken up into two parts. First, the
necessary spectral sequence is constructed for arbitrary Abelian categories. We then check
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that this spectral sequence does indeed give us the desired connection between Hodge and
algebraic de Rham cohomology.

Throughout this section and indeed the entire document we treat the theory of spec-
tral sequences as a black box. As Ravi Vakil says, "It has been suggested that the name
‘spectral’ was given because, like spectres, spectral sequences are terrifing, evil, and dan-
gerous," [Vak08]. For a gentle introduction to spectral sequences, we suggest [Vak08], and
for a more thorough treatment, [McC00].

3.1. General Setup. We will care only about spectral sequences which arise from filtra-
tions of complexes, which we construct here. We first require a few definitions.

A decreasing filtration Fil• of an object M in an Abelian category is a family of objects
(Filn)n∈Z such that

A⊇ . . .⊇ Fn ⊇ Fn+1 ⊇ . . .0.

Whenever we have a decreasing filtered object Fil•M, we may associate to it a graded
object

gr•Fil•M :=
⊕
i∈Z

gri Fil•M

where

gri Fil•M := Fili M/Fili+1 M.

Creatively, we call gr•Fil•M the associated graded object of Fil•M, and gri Fil•M the ith
graded piece of Fil•M.

Now, given a bounded below complex F• of objects in an Abelian category A, assume
we have a decreasing filtration

(3.1) Fil•F•,

and to be clear, since this is a decreasing filtration, for all i, j ∈ Z with i < j we have the
inclusions

F• ⊇ FiliF• ⊇ Fil j F•.

We will further assume that this complex is biregular, which only means that for all i� 0,
FiliF• =F• and for all i� 0, FiliF• = 0 – that is, except for a "middle bit" the filtration is
constant. Together, the assumption that F• is bounded below and that Fil•F• is biregular
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mean we have a commutative diagram

(3.2)

0 0 0 0 . . .

0 FilNF0 FilNF1 FilNF2 . . .

...
...

...
...

0 Fil1F0 Fil1F1 Fil1F2 . . .

0 Fil0F0 Fil0F1 Fil0F2 . . .

0 F0 F1 F2 . . .

d d d d

d d d d

d d d d

d d d d

d d d d

(here we have shifted all indices to be nonnegative, but apriori they need not be).
Since we’re headed toward spectral sequences, for a functor F : A → B on Abelian

categories, we ought to consider how the right derived functors of F(F•) behave under
this filtration. Indeed, the filtration Fil•F• gives a (decreasing) filtration on

R`F(F•) := h`(RF(F•))

which is defined

FiliR`F(F•) := im
(
R`F(FiliF•)→ R`F(F•)

)
,

and since Fil•F• is biregular, so is Fil•R`F(F•).
From our initial discussion, we now have two natural graded objects, gr•Fil•F• and

gr•Fil•R`F(F•). The first is a bounded below complex of A and the second is an object
of B. Passing gr•Fil•F• through the `th right hyperderived functor R`F yields another
object in B, which leads to the question: do we have an isomorphism of graded objects

(3.3) R`F(gr•Fil•F•)
?∼= gr•Fil•R`F(F•)

(Note that an isomorphism of graded objects means that the isomorphism restricts to the
individual gr′is.) In other words, do R` and gr•Fil• commute?

This question is indeed important. In essentially every situation, computing the object
R`F(gr•Fil•F•) is far easier than computing the hyperderived functor R`F(F•) (which
one needs to compute before computing gr•Fil•R`F(F•)). This is because computing
the graded object first and before moving to B under F allows us to compute an honest
cohomology group, rather than a hyper-cohomology group.

As suggested by diagram (3.2), we may form a spectral sequence known as the spectral
sequence of a filtered complex

(F.C.S.S) Eab
1 := Ra+bF(gra Fil•F•) =⇒ Ra+bF(F•).

From the theory of spectral sequences, we know that

Eab
∞ = gra Fil•Ra+bF(F•).
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Thus, the terms of the first page constitute the left side (the "easy" side) of equation (3.3),
while the terms of the ∞-page consitute the right side (the "hard" side) of equation (3.3).
Note that since Eab

∞ is a subquotient of Eab
1 , if the functor F takes values in the category of

finite dimensional k-vector spaces then we always have the inequality:

Lemma 3.4. If the functor F takes values in the category of finite dimensional k-vector
spaces, then

dimk R`F(F•) = dimk gr•Fil•R`F(F•) = ∑
a+b=`

dimk Eab
∞ ≤ ∑

a+b=`

dimk Eab
`

with equality if and only if the (F.C.S.S) degenerates on the first page.

This simple observation is invaluable, as it reduces the task of proving the degeneration
of the (F.C.S.S) on the first page to a dimension computation.

3.2. The Hodge filtration. With this general construction out of the way, we now con-
sider a particular filtration which works on any Abelian category. We call this the Hodge
filtration, or more aptly, the stupid filtration.

Suppose F• is a complex in an Abelian category A, and further suppose that F• is
bounded both above and below. The Hodge filtration is defined

(3.5) FilihF j :=

{
0 if j < i
F j if j ≥ i

.

Since F• is bounded, it is clear that Fil•hF• is decreasing and biregular. If the first nonzero
term of F• occurs at index 0 and the last at index N, then Fil•hF• looks like

(3.6)

0 0 0 0 . . . 0 0

0 0 0 0 . . . FN 0

...
...

...
...

...

0 0 0 F2 . . . FN 0

0 0 F1 F2 . . . FN 0

0 F0 F1 F2 . . . FN 0

0 F0 F1 F2 . . . FN 0

d d d d d d

d d d d d d

d d d d d d

d d d d d d

d d d d d d

d d d d d d

Note that
gra Fil•hF• = FilaF•/Fila+1F• = Fa[−a],
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where [−a] denotes the complex concentrated at the zero index obtained by shifting F•
a indices to the right and replacing every term except for Fa with a zero. We may easily
compute

Ra+bF(Fa[−a]) = RbF(Fa) = RbF(Fa),

and so the F.C.S.S becomes

(H.S.S.) Eab
1 = RbF(Fa)⇒ Ra+bF(F•),

which we call the Hodge Spectral Sequence.
We are interested in the case where k is some field and X is a k-scheme (that is, we

have a structure morphism f : X → Speck). If we take F to be the functor Γ(X ,•) and the
complex F• to be the algebraic de Rham complex Ω•X/k then

Eab
1 = RbΓ(X ,Ωa

X/k) = Hb(X ,Ωa
X/k)

and
Ra+bΓ(X ,Ω•X/k) = Ha+b

dR (X/k).

This is a spectral sequence of k-vectors spaces, so Lemma 3.4 applies, and since

H`
Hodge(X/k)∼= H`

dR(X/k) ⇐⇒ the H.S.S. degenerates on the first page,

it tells us the following:

Lemma 3.7. Let X be a proper scheme over a field k.

H`
Hodge(X/k)∼= H`

dR(X/k) ⇐⇒ ∑
i+ j=`

dimk H j(X ,Ωi
X/k) = dimk H`

dR(X/k).

Proof. Since X is a proper scheme, H`
Hodge(X/k) and H`

dR(X/k) are finite-dimensional (see
[Har77, Chapter III Theorem 5.2] or [Ser55] for the projective case, [AG66, III chapter 3]
for the general case). This means

H`
Hodge(X/k)∼= H`

dR(X/k)

if and only if

dimk H`
dR(X/k) = dimk H`

Hodge(X/k) = ∑
i+ j=`

dimk H j(X ,Ωi
X/k).

□

4. EQUIVALENCE OF HODGE AND ALGEBRAIC DE RHAM COHOMOLOGY FOR PRIME
CHARACTERISTIC SCHEMES

Once the Hodge spectral sequence has been defined, one typically proves the equiv-
alence of Hodge and algebraic de Rham cohomology for schemes by first proving it for
complex manifolds and extending to schemes over fields of characteristic 0 via Serre’s
GAGA principle. However, this technique fails for schemes of characteristic p. We instead
make use of the relative Frobenius map to build the Cartier isomorphism, which allows
us to cleverly circumvent the use of GAGA. In this section, we briefly introduce prime
characteristic schemes, outline the construction of the Cartier isomorphism, and use it to
prove the equivalence of Hodge and algebraic de Rham cohomology for prime character-
istic schemes under certain assumptions.



ALGEBRAIC DE RHAM COHOMOLOGY AND THE HODGE SPECTRAL SEQUENCE 13

4.1. Frobenius action and Cartier Isomorphism. Throughout this section, p denotes a
fixed prime integer. We say that a scheme X is of characteristic p if pOX = 0, i.e. if the
morphism of schemes X → SpecZ factors (uniquely) through SpecFp:

X SpecZ

SpecFp

Here, pOX = 0 precisely means that pOX (U) is the zero ring for any open set U ⊆ X .
Notice that this means OX (U) is a ring of prime characteristic for each open U ⊆ X .

If X is a scheme of prime characteristic, then the absolute Frobenius morphism of X (or
simply the Frobenius endomorphism if there is no risk of ambiguity) is the endomorphism
FX : X → X which is the identity on sp(X) and is the restriction of scalars along Frobenius
on OX . To be painfully explicit, the absolute Frobenius morphism on a scheme (X ,OX )
of prime characteristic is a map FX = (idX ,F]) where idX is the identity on the topological
space X and F] :OX →OX is a map of sheaves whose components F :OX (U)→OX (U)
are all the Frobenius endomophism r 7→ rp

OX (U) OX (U)

OX (V ) OX (V ).

ρUV

r 7→rp

ρUV

s 7→sp

Let X → Y be a morphism of prime characteristic schemes. There is a commutative
diagram

(4.1)

X X

Y Y,

f

FX

f

FY

which allows us to construct the scheme (Y,FY )×Y X (see [Har77, page 87] for a definition
of the fibered product) induced from X by the change of base FY . The scheme (Y,FY )×Y X
is denoted X (p) and is known as the Frobenius twist of X . The morphism FX defines a
unique Y -morphism F = FX/Y : X→ X (p), giving rise to yet another commutative diagram:

(4.2)

X X (p) X

Y Y.

f

F

f

FY

The map F : X (p) → is known as the relative Frobenius map of X . As it turns out, the
Frobenius twist has no affect on cohomology.

Lemma 4.3. Let S = Speck be a perfect field, and let X/S be smooth projective. Then,

H`
Hodge(X/k)∼= H`

Hodge(X
(p)/k).
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Proof. Take i≥ 0. In the language of 2.24, we have morphisms X (p) f−→ X
g−→ Speck where

f is an isomorphism and therefore smooth. This gives us an exact sequence

0→ f ∗Ω1
X/k→Ω1

X/k→Ω1
X(p)/X → 0

in which Ω1
X(p)/X

∼= 0, since f is an isomorphism. This means

f ∗Ω1
X/k
∼= Ω1

X/k,

and by taking wedge products we obtain isomorphisms

f ∗Ωi
X/k→Ωi

X/k

for each i≥ 0. This gives us an isomorphism on sheaf cohomology

H j(X (p),Ωi
X(p)/k)

∼= H j(X (p), f ∗Ωi
X/k)
∼= H j(X ,Ωi

X/k)

where the second isomorphism follows, once again, from the fact that f is an isomorphism.
These are precisely the summands which appear in Hodge cohomology, so we conclude

H`
Hodge(X/k) =

⊕
i+ j=`

H j(X ,Ωi
X/k)
∼=

⊕
i+ j=`

H j(X (p),Ωi
X(p)/k) = H`

Hodge(X
(p)/k).

□

4.2. Cartier Isomorphism. The key to proving the degeneration of the H.S.S. in the
prime characteristic case lies in the use of the Cartier isomorphism. Before we construct
it, we will need the following proposition:

Proposition 4.4. Let Y be a scheme of characteristic p, and f : X→Y a smooth morphism
of pure relative dimension n (see Proposition 2.26). Then the relative Frobenius F : X →
X (p) is a finite and flat morphism, and the OX(p)-algebra F∗OX is locally free of rank pn.
In particular, if f is étale, F is an isomorphism, i.e. the square (4.2) is Cartesian.

Proof. Suppose first that n = 0. Since F is a smooth map of relative dimension 0, it is
étale [AG66, IV, Corollary 17.10.2], which certainly means it is flat and finite [AG66, IV,
Corollary 17.6.2].

Once we know the n = 0 case holds, the case in which X = An
Y = SpecY [t1, ..., tn] is

immediate. The monomials ∏ tmi
i with 0 ≤ mi < p− 1 form a basis for F∗OX over OX ,

which gives us the desired result.
Finally, the general case is deduced by factoring f as f = hg according to Lemma 2.23:

X
g−→ An

Y
h−→ Y.

Here the map h is the canonical projection map, which is smooth and of pure relative
dimension n. The map g is étale by construction, and is therefore finite and flat. □

Theorem 4.5 (Cartier). Let Y be a scheme of characteristic p and f : X → Y a morphism.
(a) There exists a unique homomorphism of graded OX -algebras

γ :
⊕

Ωi
X(p)/Y →

⊕
HiF∗Ω∗X/Y

satisfying the following two conditions:
(i) for i = 0, γ is given by the homomorphism F∗ :OX(p) → F∗OX ;

(ii) for i = 1, γ sends 1⊗ ds to the class of sp−1ds in H1F∗Ω∗X/Y (where 1⊗ ds
denotes the image of the section ds of Ω1

X/Y in Γ1
X(p)/Y

.
(b) If f is smooth, γ is an isomorphism.
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Proof. As is done in [Ill96], we only briefly outline the proof of (a). It amounts to con-
structing a homomorphism of graded OX -algebras

γabs :
⊕

Ωi
X/Y →

⊕
H iFX∗Ω•X/Y .

The only difference between γ and γabs is the appearance of the absolute Frobenius map
FX : X → X in the place of the relative Frobenius F in the codomain, and we construct γabs
to satisfy conditions analogous to (i) and (ii):

(i’) for i = 0, γabs is given by the homomorphism F∗X ;
(ii’) for i = 1, γabs is given by sending ds in Ω1

X/Y to sp−1ds.

For the complete argument, see [Kat70, Theorem 7.2].
To prove (b), we first factor the map f : X→Y through the affine n space An

Y based at Y ,
argue that we may reduce to the case Y =An

k , and then further reduce to n = 1 and k = Fp.
By 2.23, one may assume that f factors as

X
g−→ An

Y
h−→ Y.

Here, g is étale, An
Y is the affine n space over the base scheme Y , defined

An
Y = SpecY (OY [T1, ...,Tn]),

and the map h is simply the canonical projection. The commutative square (4.1) gives us a
new commutative diagram,

X X (p)

An
Y (An

Y )
(p)

g

FX

g(p)

FY

and from Proposition 2.24 (b) we know the homomorphism g∗Ωi
Z/Y → Ωi

X/Y to be an
isomorphism. By Proposition 4.4, we know the relative Frobenius map F to be finite and
the above square to be Cartesian, so we see that the map of complexes induced by g(p) is
an isomorphism:

g(p)∗F∗Ω•Z/Y
∼−→ F∗Ω•X/Y .

This means it is also an isomorphism on the level of cohomology:

g(p)∗H i(F∗Ω•Z/Y

) ∼−→ H i(F∗Ω•X/Y

)
.

Using the functoriality of γ reduces to An
Y , and using extension of scalars and Künneth’s

formula reduces it to n = 1 and Z = Fp (see [Ill96, (3.6.3)] for more details). It therefore
suffices to prove (b) for the case where Y = SpecFp[t]. We show that H i

(
F∗Ω•Y/Fp

)
is a

free module over OY with rank 1, and conclude that γ is an isomorphism.
In this case, Y (p) = (Y,FY )×Y = Y and OY = Fp[t]. We claim that 1, t, ..., t p−1 forms

a basis for F∗OY . Indeed, recall that the module F∗OY is obtained by restricting the OY
action through the Frobenius endomorphism, and note that we denote by F∗r the element in
F∗OY corresponding to r ∈OY . For any monomial F∗at` ∈ F∗OY , choose m∈ {0, ..., p−1}
such that for some q, p ·q+m = `, giving us

atq ·F∗tm = F∗aptq·p · tm = F∗atq·p+m = F∗at`.

Since we may obtain any monomial in F∗OY from the basis {1, ..., t p−1}, by taking linear
combinations over OY we see this does indeed span F∗OY . Now, we have that

H0(F∗Ω•Y/Fp

)
= kerd,
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and since the differential d : F∗OY → F∗O1
Y = (F∗OY )dt sends t i to i · t i−1 dt, the element

1 generates kerd. This means H0
(
F∗Ω•Y/Fp

)
is rank 1, and therefore isomorphic toOY as a

module. Similarly, H1
(
F∗Ω•Y/Fp

)
is rank 1. Finally, as in part (a), the cases i = 0 and i = 1

fully determine H i
(
F∗Ω•Y/Fp

)
, and we conclude that γ is an isomorphism. □

4.3. Degeneration of the Hodge Spectral Sequence. The Cartier isomorphism is the key
to showing the equivalence of algebraic de Rham and Hodge cohomology in the case that
X is of characteristic p. The key idea is to construct a quasi-isomorphism

(Ω•X(p)/k,0)→ (F∗Ω•X/k,d)

which induces the Cartier isomorphisms on cohomology. In the interest of brevity, if such
a quasi-isomorphism exists for a scheme X , we say that X satisfies (QI).

(QI): there exists a quasi-isomorphism (Ω•
X(p)/k

,0)→ (F∗Ω•X/k,d) inducing the Cartier
isomorphisms on cohomology.

It is easy to see why (QI) implies degeneration on the first page of the H.S.S.. This is
illustrated in the following proposition.

Proposition 4.6. Let X be a scheme for which (QI) holds. Then the H.S.S. degenerates on
the first page.

Proof. If (QI) holds, then

H`
Hodge(X/k)

(1)∼= H`
Hodge(X

(p)/k
∼=H`

(
(Ω•X(p)/k,d)

)
(2)∼= H`

(
(F∗Ω•X/k,d)

)
(3)∼= H`

(
(Ω•X/k,d)

)
∼= H`

dR(X/k).

Isomorphism (1) is simply Lemma 4.3, (2) is given by (QI), and (3) follows from the fact
that F is a finite map. □

It is now our task to determine exactly when (QI) holds. There two known cases:
(1) X/k has a smooth lift to W2(k) and dim(X) < char(k) (when k = Fp, W2(k) =

Z/p2Z)
(2) X/k has a smooth lift to W2(k) and the relative Frobenius map F : X → X (p) lifts

to a map F : X̃ → X̃ (p), where X̃ (p) = X̃×W2(k)W2(k).

Here W2(k) is the ring k2 with the addition

(a1,a2)+(b1,b2) = (a1 +b1,a2 +b2 + p−1(ap−1
1 +bp−1

1 − (a1 +b1)
p)

and the multiplication

(a1,a2) · (b1,b2) = (a1b1,b
p
1a2 +b2ap

1).

It is known as the ring of two Witt vectors of k.
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Of the two cases where (QI) holds, we handle only the former. The latter is significantly
more technical. Our goal, remember, is to build a quasi-isormophism of complexes

(4.7) φ• : Ω•X(p)/k[−1]→ F∗Ω•X/k

which induces γ1 in cohomology. We use the lift of X to W2(k) in this first case to build the
map.

Theorem 4.8. Let k be a perfect field of prime characteristic p > 0, and let X be a smooth
and proper k-scheme such that dimX < p. If X is lifted over W2(k), the H.S.S. degenerates
on the first page.

Proof. By Proposition 4.6, it suffices to show that there exists a quasi-isomorphism φ• :
Ω•

X(p)/k
[−1]→ F∗Ω•X/k which induces the Cartier isomorphism on cohomology. First, sup-

pose we had this map in degree 1:

φ1 : Ω1
X(p)/k[−1]→ F∗Ω1

X/k.

From this, it is possible to build the maps

φ i : Ωi
X(p)/k[−1]→ F∗Ω1

X/k.

Indeed, if i≥ 1, then we may define

φ i : Ωi
X(p)/k

a−→
(
Ω1

X(p)/k

)⊗i (φ1)⊗i

−−−−→
(
F∗Ω•X/k

)⊗i→ F∗Ω•X/k.

Here, a is the antisymmetrization map:

a(ω1∧ ...∧ωi) =
1
i! ∑

σ∈Si

(−1)sgn(σ)ωσ(1)⊗ ...⊗ωσ(i).

Since k is of characteristic p, this map is undefined for i≥ p. It is crucial, then, that Ωi
X(p)/k

and Ωi
X/k are trivial for i≥ p, which happens exactly when dimX < p.

It now remains to build φ0 and φ1. The former map is easy, we simply define φ0 = F∗ :
OX → F∗OX , r 7→ F∗r. The latter map requires several additional steps.

Let X0 denote the lift of X over W2(k). We first notice that the map p : F∗Ω1
X/k →

p ·F∗Ω1
X0/k0

is an isomorphism. Furthermore, by [Ill96, 3.4 (a)], the image of F∗ : Ω1
X/k→

F∗Ω1
X/k is contained in pF0,∗Ω1

X/k as long as the relative Frobenius map F : X → X (p) lifts
to X0. This lift always exists Zariski-locally [Ill96], and by gluing the local lifts of the rela-
tive Frobenius using the Cech complex, considering only the local case suffices. See [Ill96,
Lemma 5.4] for the full argument. Since p : F∗Ω1

X/k→ p ·F∗Ω1
X0/k0

is an isomorphism and
F∗(Ω1

X/k) is contained in pF0,∗Ω1
X/k, we have the following diagram:

Ω1
X(p)/k

pF0,∗Ω1
X/k

Ω1
X(p)

0 /k0
F0,∗Ω1

X0/k0
.

F∗

ψ

·p

The map ψ is the homomorphism induced from F∗ by division by p, that is, it is the unique
map that makes the above diagram commute. If x is a local section ofOX0 whose reduction
modulo p is x0, and x′ lifts in OX(p) the image x′0 of x0 in OX ′0

, we see that

F∗x′ = xp + pb
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for some b ∈ OX . If we let d : OX → Ω1
X/k be the differential in the algebraic de Rham

complex, then
F∗(d(x)) = pap−1da+ pdb,

so
ψ(da′0) = ap−1da0 +db0.

Define φ1 = p−1 ◦F∗ : Ω1
X(p)/k

→ F∗Ω1
X/k, or equivalently, the map obtained by tracing

down and right in the above diagram. By the above, H1φ1 = γ1, the Cartier map. Since
this extends to φ i, we are done. □

5. FROM CHARACTERISTIC p TO CHARACTERISTIC 0

As previously stated, GAGA allows one to use the equivalence of Hodge and de Rham
cohomology for complex manifolds to prove it for finite dimensional schemes over charac-
teristic 0 fields. However, using the techniques of Illusie, it is possible to extend the result
in the characteristic p case to the characteristic 0 case, and therefore entirely avoid the use
of GAGA. We briefly outline those results here.

Suppose k is a field of characteristic zero, and X → Speck a scheme over k. Illusie’s
idea was to realize k as an inductive limit of finite-type Z-algebras, in order to quotient by
a prime p such that dimX < p. To do this, one must first know an arbitrary field k is indeed
the inductive limit of Z algebras.

Lemma 5.1. Suppose k is a field. Then there exists a system (Ai)i∈I of Z-algebras of finite
type such that for each i ∈ I, Ai ⊆ k, and

lim−→Ai = k.

Proof. Let Γ be the collection of all Z-algebras of finite type contained in k. This is a
directed poset under inclusion. If we have two finite type Z-algebras A = Z[a1, ...,an] and
B = Z[b1, ...,bm] then A,B ⊆ Z[a1, ...,an,b1, ....,bm], so any pair of elements in Γ have
an upper bound. This means Γ is a directed set. Furthermore, if A ⊆ B, we may define
fA,B : A→ B to be the inclusion map. The map fA,A : A→ A is the identity on A, and for
A⊆ B⊆C, fB,C ◦ fA,B = fA,C, so Γ is a direct system. Certainly lim−→{A}A∈Γ ⊆ k, since A⊆ k
for all A ∈ Γ. Furthermore, for each x ∈ k, Z[x] is a finite Z-algebra, meaning it must be
contained in Γ. This gives us x ∈ lim−→{A}A∈Γ, and we conclude lim−→{A}A∈Γ = k. □

Having established this lemma, we now sketch Illusie’s proof.

Theorem 5.2 (Illusie, Hodge Degeneration Theorem). Let k be a field of characteristic
zero, and X a smooth and proper k-scheme. Then the Hodge spectral sequence of X over
k,

Eab
1 = Hb(X ,Ωa

X/k)⇒ H•dR(X/k)

degenerates at E1.

Proof. Set dimk H j(X ,Ωb
X/k) = hab, dimHn

dR(X/k) = hn. It suffices to prove that for all

n, hn = ∑a+b=n hab by Lemma 3.4. Applying Lemma 5.1, we may write k as the limit of
a system (Ai)i∈I where each Ai is a Z-algebra of finite type which lives in k. According
to [Ill96, 6.3], there is some α ∈ I as well as a smooth and proper Sα -scheme Xα (where
Sα = SpecAα ) for which X is induced by base change Speck→ Sα . Write A = Aα and
S = Sα . If Z = SpecA[1/N] for suitably large N, one may choose a point s of S for which
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the residue field k = k(s) is a finite field of characteristic p > dimX . One may show that
the dimension of cohomology is preserved, so that

∑
i+ j=`

dimk H j(X ,Γi
X/k) = dimk H`

dR(X/k),

and conclude by Lemma 3.7. □
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